JUDLR@! | Engineering

Simplicity

Juniper Cloud-Native Router Deployment
Guide

Published
2022-10-03

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Cloud-Native Router Deployment Guide
Copyright © 2022 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

1 Overview
What Is the Juniper® Cloud-Native Router? | 2
System Resource Requirements | 6

2 Deploy Juniper Cloud-Native Router

Install Juniper Cloud-Native Router | 11

Install Juniper Cloud-Native Router Using Helm Chart | 11
Verify Operation of Containers | 19

Troubleshoot Deployment Issues | 21

Troubleshoot Deployment Issues | 22
View Cloud-Native Router Controller Configuration | 23
View Log Files | 23

3 Post Deployment

Manage Cloud-Native Router Controller and Cloud-Native Router vRouter | 26

Access the Cloud-Native Router CLIs | 26
Remove the Juniper Cloud-Native Router | 35

Sample Configuration Files | 35

CHAPTER

Overview

What Is the Juniper® Cloud-Native Router? | 2

System Resource Requirements | 6

What Is the Juniper® Cloud-Native Router?

IN THIS SECTION

Overview | 2
Benefits | 3

Juniper Cloud-Native Router Components | 5

Overview

Juniper Cloud-Native Router (JCNR) is a container-based software solution that combines the JCNR-
controller (cCRPD-based control plane) and the JCNR-vRouter (DPDK-enabled forwarding/data plane).
With the cloud-native router, you can enable Junos OS-based switching control with enhanced
forwarding capabilities.

JCNR-controller running on a Kubernetes (K8s) compute-host provides control plane management
functionality and uses the forwarding capabilities provided by either the Linux kernel or the DPDK-
enabled JCNR-vRouter.

DPDK is an open source set of libraries and drivers. DPDK enables fast packet processing by allowing
network interface cards (NICs) to send direct memory access (DMA) packets directly into an
application’s address space. The applications poll for packets, to avoid the overhead of interrupts from
the NIC. Integrating with DPDK allows a vRouter to process more packets per second than is possible
when the vRouter runs as a kernel module.

In this integrated solution, JCNR-Controller uses gRPC-based services to exchange messages and to
communicate with JCNR-vRouter, thus creating the fully functional Cloud-Native Router. This close
communication allows you to:

e Learn about fabric and workload interfaces
e Provision DPDK- or kernel-based interfaces for K8s pods as needed

o Configure IPv4 and IPvé address allocation for Pods

Benefits

Higher packet forwarding performance with DPDK-based JCNR-vRouter

e Easy deployment, removal, and upgrade on general purpose compute devices using Helm
e Full switching and forwarding stacks in software

e Basic L2 functionality, such as MAC learning, MAC aging, MAC limiting, and L2 statistics
e L2 reachability to Radio Units (RU) for management traffic

e L2 reachability to physical distributed units (DU) such as 5G millimeter wave DUs or 4G DUs
¢ VLAN tagging

e Bridge domains

e Trunk, access, and sub-interface ports

e Supports multiple virtual functions (VF) on Ethernet NICs

e Support for bonded VF interfaces

e Configurable L2 access control lists (ACLs)

e Rate limiting of egress broadcast and multicast traffic on fabric interfaces

e Out-of-the-box software-based open radio access network (O-RAN) support

e Quick spin up with containerized deployment

o Highly scalable solution

Figure 1: Components of Juniper Cloud-Native Router

Linux Host running Kubernetes

Calico Syslog-NG
CNI App
Pod

Standalone K8s Cluster

Multus
CNI
Pod

“‘__m
Control Sched
Plane

Pod

JCNR-CNI

JCNR JCNR
vrouter- vrouter-
agent agent-dpdk

Pod

JCNR
Controller

Telemetry
Exporter

Pod

Intel E-810
or
Intel XL710

Data Path

R

—
o

—

jn-000367

TOR Switch

Kubernetes

Kubernetes (K8s) is an orchestration platform for running containerized applications in a clustered
computing environment. It provides automatic deployment, scaling, networking, and management of
containerized applications.

A K8s pod consists of one or more containers, with each pod representing an instance of the
application. A pod is the smallest unit that K8s can manage. All containers in the pod share the same
network name space.

We rely on K8s to orchestrate the infrastructure that the cloud-native router needs to operate.
However, we do not supply K8s installation or management instructions in this documentation. See
https:/kubernetes.io for Kubernetes documentation. Currently, Juniper Cloud-Native Router requires
that the K8s cluster be a standalone cluster, meaning that the K8s master and worker functions both run
on a single node.

https://kubernetes.io

Juniper Cloud-Native Router Components

Juniper Cloud-Native Router Controller

The JCNR-Controller (cRPD) is the control-plane part of the Juniper Cloud-Native Router solution. You
use the controller to communicate with the other elements of the cloud-native router. Configuration,
policies and rules that you set on the controller at deploy time are communicated to other components,
primarily the JCNR-vRouter-agent and JCNR-vRouter for implementation.

For example, access control lists (ACLs) are supported on JCNR-Controller to configure L2 access lists
with deny rules. JCNR-controller sends the configuration information to the JCNR-vRouter through the
JCNR-vRouter agent.

Juniper Cloud-Native Router Controller Functionality:

e Exposes Junos OS compatible CLI configuration and operation commands that are accessible to
external automation and orchestration systems using the NETCONF protocol.

e Supports JCNR-vRouter as the high-speed forwarding plane. This enables applications that are built
using the DPDK framework to send and receive packets directly to the application and the JCNR-
vRouter without passing through the kernel.

e Support for configuration of VLAN-tagged sub-interfaces on physical function (PF), virtual function
(VF), virtio, access, and trunk interfaces managed by the DPDK-enabled JCNR-vRouter.

e Supports configuration of bridge domains

Juniper Cloud-Native Router-vRouter

JCNR-vRouter is an alternative to the Linux bridge or the Open vSwitch (OVS) module in the Linux
kernel. The pod which houses the JCNR-vRouter container also houses the JCNR-vRouter agent
container. JCNR-vRouter functions to:

e Perform L2 forwarding
e Perform L2 rate-limiting
e Allows the use of DPDK-based forwarding

e Enforce L2 access control lists (ACLs)

JCNR-Container Network Interface (JCNR-CNI)

JCNR-CNI is a new CNI developed by Juniper to handle Juniper-developed Pods like JCNR-vRouter
agent and JCNR-vRouter agent DPDK, along with DPDK application Pods and the cloud-native router
controller. JCNR-CNI is a kubernetes CNI plugin installed on each node to provision network interfaces
for application pods. During pod creation, K8s delegates Pod interface creation and configuration to
JCNR-CNI. JCNR-CNI interacts with JCNR control-plane and JCNR-vrouter to setup DPDK interfaces.
When a Pod is removed, JCNR-CNI is invoked to de-provision the Pod interface, configuration, and

associated state in K8s and cloud-native router components. JCNR-CNI works with the Multus CNI to

add and configure Pod interfaces.
JCNR-CNI provides the following functionality:

e Manages the networking tasks in K8s pods such as assigning IP addresses, allocating MAC addresses,
and setting up interfaces between the Pod and host in a K8s cluster

e Applies L2 ACLs. The policies are sent to JCNR-vRouter for applying in the data plane
e Acts on Pod events such as add and delete

e Generates cRPD configuration

Syslog-NG

Juniper Cloud-Native Router uses a syslog-ng Pod to gather event logs from cRPD and vRouter and
transform the logs into JSON-based notifications. The notifications are logged to a file and can be
accessed from that file.

System Resource Requirements

Read this section to understand the Linux host requirements for Juniper Cloud-Native Router.

The following tables list the host system requirements on page 6 for installing cloud-native router in
L2 mode, cloud-native router resource requirements on page 8, and other miscellaneous requirements

on page 9.

Table 1: Cloud-Native Router Host System Requirements

Release 22.2 Release 22.3
Value/ Notes Value/Version Notes

Component Version

CPU Intel x86 The tested CPU is Intel Xeon | Intel x86 The tested CPU is Intel Xeon
Gold 6212U 24-core @2.4 Gold 6212U 24-core @2.4
GHz GHz

Host OS RedHat Version 8.4, 8.5, 8.6 RedHat Version 8.4, 8.5, 8.6

Enterprise Enterprise Linux

Linux

Table 1: Cloud-Native Router Host System Requirements (Continued)

Component

Kernel
Version

NIC

IAVF driver

ICE_COMMS

ICE

i40e

Kubernetes
(K8s)

Release 22.2

Value/
Version

Notes

4.18.X The tested kernel version is

4.18.0-305.rt7.72.el8.x86_64

Intel E810
with
Firmware
3.20
0x8000d853
1.3146.0

Version
442

Version
1.3.35.0

Version
1.8.3.1.2

The tested K8s version is
1.22.4, although 1.22.2 will
also work.

NOTE: The K8s cluster must
be a standalone/all-in-one

Version
1.22.2

cluster

Release 22.3

Value/Version

4.18.X

e Intel E810
with
Firmware
3.20

0x8000d853

1.3146.0

e Intel XL710

with
Firmware
8.60

Version 4.4.2

Version 1.3.35.0

Version
1.8.3.1.2

Version 2.18.9

Version 1.22.2

Notes

The tested kernel version is
4.18.0-305.rt7.72.€l8.x86_64

ICE driver is used only with
the Intel E810 NIC

i40e driver is used only with
the Intel XL710 NIC

The tested K8s version is
1.22.4, although 1.22.2 will
also work.

NOTE: The K8s cluster must
be a standalone/all-in-one
cluster

Table 1: Cloud-Native Router Host System Requirements (Continued)

Value/

Component Version

Calico Version
3.22.0

Multus Version 3.8
Helm 3.9.x
Container- Docker CE
RT 20.10.11

Release 22.2

Notes

Table 2: Cloud-Native Router Resource Requirements

Resource

Data plane forwarding cores

Service/Control Cores

UIO Driver

Hugepages (1G)

JCNR Controller cores

JCNR vRouter Agent cores

Releases 22.2 and 22.3

Value

2 physical cores (2p)

VFIO-PCI

4 Gi

Release 22.3

Value/Version Notes

Version 3.22.0

Version 3.8

3.9.x

Docker CE
20.10.11

Usage Notes

Add GRUB_CMDLINE_LINUX_DEFAULT
values in /etc/default/grub and
reboot the host. For example:
GRUB_CMDLINE _LINUX_DEFAULT="console
=ttyl console=ttySo
default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on
iommu=pt"

Table 3: Miscellaneous Requirements

Cloud-Native Router Release

22.2 and 22.3

Requirement

Enable VLAN driver at system boot

Enable VFIO-PCI driver at system boot

Set IOMMU and IOMMU-PT in /etc/default/grub file.
For example: GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt".

Disable Spoofcheck on VFs allocated to JCNR. For
example: ip link set <interfacename> vf 1 spoofcheck
of f.

Set trust on VFs allocated to JCNR. For example: ip
link set <interfacename> vf 1 trust on

CHAPTER

Deploy Juniper Cloud-Native Router

Install Juniper Cloud-Native Router | 11

Troubleshoot Deployment Issues | 21

Install Juniper Cloud-Native Router

SUMMARY IN THIS SECTION
The Juniper Cloud-Native Router (JCNR) uses the Install Juniper Cloud-Native Router Using
the JCNR-Controller (cRPD-based control plane) and Helm Chart | 11

JCNR-CNI to provide control plane capabilities and a
container network interface. Juniper Cloud-Native
Router uses the DPDK-enabled vRouter to provide
high-performance data plane capabilities and Syslog-
NG to provide notification functions. This section
explains how you can install these components of
the Cloud-Native Router.

Verify Operation of Containers | 19

The JCNR-Controller (cRPD) is an initialization container that provides control plane functionality for the
cloud-native router. The control plane is responsible for provisioning of the workload and fabric
interfaces used in Juniper Cloud-Native Router. It also manages communication with the vRouter-agent
and the vRouter itself over a gRPC connection.

The JCNR-CNI is the container network interface that Juniper Cloud-Native Router uses to
communicate with physical interfaces on the server and pod and container network interfaces within
the installation.

The Juniper Cloud-Native Router Virtual Router (vRouter) is a container application set that provides
advanced forwarding plane functionality. It extends the network from the physical routers and switches
into a virtual overlay network hosted in the virtualized servers. The Data Plane Development Kit (DPDK)
enables the vRouter to process more packets per second than is possible when the vRouter runs as a
kernel module.

The Syslog-NG is a container application that allows Juniper Cloud-Native Router to provide
notifications to users about events that occur in the cloud-native router deployment.

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

As mentioned in the "System Resource Requirements" on page 6, the Helm package manager for
Kubernetes must be installed prior to installing Juniper Cloud-Native Router components.

NOTE: We do not provide a specific path into which you must download the package and install
the software. Because, of this you can copy the commands shown throughout this document and
paste them into the CLI of your server.

The high-level overview of Juniper Cloud-Native Router installation is:

1.

2.

8.

Download the software installation package (tarball)

Expand the tarball

Change directory to Juniper_Cloud_Native_Router_<release number>

Load the image files into Docker

Enter the root password for your host server and your Juniper Cloud-Native Router
Apply the secrets/jcnr-secrets.yaml to the K8s system

Edit the values.yaml file to suit the needs of your installation

Install the Juniper Cloud-Native Router

Each high-level procedure listed above is detailed below,

1.

Download the tarball, Juniper_Cloud_Native_Router_<release-number>.tgz, to the directory of your
choice.

How you get the tarball into a writeable directory on your server is up to you. You must perform the
file transfer in binary mode so the compressed tar file will expand properly.

Expand the file Juniper_Cloud_Native_Router_<release-number>.tgz.

tar xzvf Juniper_Cloud_Native_Router_<release-number>.tgz

Juniper_Cloud_Native_Router_22.3/

Juniper_Cloud_Native_Router_22.3/secrets/

Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.

Juniper_Cloud_Native_Router_22.

Juniper_Cloud_Native_Router_22

Juniper_Cloud_Native_Router_22

Juniper_Cloud_Native_Router_22.

Juniper_Cloud_Native_Router_22.

3/secrets/jcnr-secrets.yaml
3/helm_charts/
3/helm_charts/jcnr/

.3/helm_charts/jcnr/Chart.yaml

.3/helm_charts/jcnr/values.yaml

3/helm_charts/jcnr/charts/

3/helm_charts/jcnr/charts/jcnr-vrouter/

Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.

Juniper_Cloud_Native_Router_22.

jenrvrouter_cleanup.yaml

Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.

Juniper_Cloud_Native_Router_22.

config.yaml

Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.
Juniper_Cloud_Native_Router_22.

Juniper_Cloud_Native_Router_22.

3/helm_charts/jcnr/charts/jcnr-vrouter/.helmignore
3/helm_charts/jcnr/charts/jcnr-vrouter/Chart.yaml
3/helm_charts/jcnr/charts/jcnr-vrouter/templates/
3/helm_charts/jcnr/charts/jcnr-vrouter/templates/_helpers. tpl
3/helm_charts/jcnr/charts/jcnr-vrouter/templates/

3/helm_charts/jcnr/charts/jcnr-vrouter/templates/vrouter.yaml
3/helm_charts/jcnr/charts/jcnr-vrouter/values.yaml
3/helm_charts/jcnr/charts/jcnr-vrouter/README . md
3/helm_charts/jcnr/charts/syslog-ng/
3/helm_charts/jcnr/charts/syslog-ng/.helmignore
3/helm_charts/jcnr/charts/syslog-ng/Chart.yaml
3/helm_charts/jcnr/charts/syslog-ng/files/
3/helm_charts/jcnr/charts/syslog-ng/files/syslog-ng.conf
3/helm_charts/jcnr/charts/syslog-ng/templates/
3/helm_charts/jcnr/charts/syslog-ng/templates/_helpers.tpl
3/helm_charts/jcnr/charts/syslog-ng/templates/syslog. yaml
3/helm_charts/jcnr/charts/syslog-ng/templates/syslog-

3/helm_charts/jcnr/charts/syslog-ng/values.yaml
3/helm_charts/jcnr/charts/jcnr-cni/
3/helm_charts/jcnr/charts/jcnr-cni/.helmignore
3/helm_charts/jcnr/charts/jcnr-cni/Chart. yaml
3/helm_charts/jcnr/charts/jcnr-cni/files/
3/helm_charts/jcnr/charts/jcnr-cni/files/jcenr-cni-config. tmpl
3/helm_charts/jcnr/charts/jcnr-cni/templates/
3/helm_charts/jcnr/charts/jcnr-cni/templates/_helpers. tpl
3/helm_charts/jcnr/charts/jcnr-cni/templates/jcnr-config. yaml
3/helm_charts/jcnr/charts/jcnr-cni/templates/jcnr_cleanup.yaml
3/helm_charts/jcnr/charts/jcnr-cni/templates/jcnr.yaml
3/helm_charts/jcnr/charts/jcnr-cni/templates/jcnr-nad. yaml
3/helm_charts/jcnr/charts/jcnr-cni/values.yaml
3/helm_charts/jcnr/charts/jcnr-cni/README . md
3/contrail-tools/

3/contrail-tools/contrail-tools.yaml

3/images/

3/images/jcnr-cni-images.tar.gz
3/images/jcnr-vrouter-images.tar.gz
3/images/syslog-ng-images.tar.gz

3/README . md

3. Change directory to Juniper_Cloud_Native_Router_22.3

cd Juniper_Cloud_Native_Router_22.3

NOTE: All remaining steps in the installation assume that your current working directory is
now Juniper_Cloud_Native_Router_22.3.

4. Load the image files, jenr-cni-images. tar.gz, jenr-vrouter-images.tar.gz, and syslog-ng-images.tar.gz

into docker. The image files are located in the Juniper_Cloud_Native_Router_22.3/images directory

relative to where you expanded the tarball in the previous step.

docker load -i images/jcnr-cni-images.tar.gz

94c4181ae7dd:
524.2MB
Loaded image:
86441b6792e3:
160.3kB
2f858df19dda:
26.74MB
dc5b9d2fofea:
7.68kB
Loaded image:
67e3ffed6327:
11.26kB
Loaded image:

Loaded image:

Loading layer [>] 524.2MB/

svl-artifactory.juniper.net/junos-docker-local/warthog/crpd:22.3R1-S1.5

Loading layer [>] 160.3kB/
Loading layer [>] 26.74MB/
Loading layer [>] 7.68kB/
svl-artifactory.juniper.net/junos-docker-local/warthog/jcnr-cni:20220810-f753972

Loading layer [>] 11.26kB/

svl-artifactory.juniper.net/junos-docker-local/warthog/crpdconfig-generator:v3
svl-artifactory.juniper.net/atom_virtual_docker/busybox:latest

docker load -i images/jcnr-vrouter-images.tar.gz

50244b5caf0a:
3.584kB
4793f35d3ae7:
5.632kB
f1697a784d3d:
3.584kB

Loading layer [>] 3.584kB/
Loading layer [>] 5.632kB/
Loading layer [>] 3.584kB/

9d6c27fd1364:
28.79MB
877da3dd69a5:
11.26kB
£3519070976e:
1.396MB
145f8619ed40:
183.5MB
d4fedae73ff1:
6.812MB
9a9e214f9045:
2.467MB
2c026bac5448:
41.59MB
8f873cad2faf:
40.13MB
b6e9feab33a7:
72.19kB
19234c4cbb31:
498.2kB
f9c52ee9be26:
18.66MB
Loaded image:
agent:JCNR-22.
8d7366c22fd8:
3.697MB
a93413564615:
18.29MB
415be476c298:
1.352MB
€83d4114481d:
2.365MB
623e9ce88f39:
2.81MB
f4e7db28266:
54.39MB

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

>] 28.79MB/

>] 11.26kB/

>] 1.396MB/

>] 183.5MB/

>] 6.812MB/

>] 2.467MB/

>] 41.59MB/

>] 40.13MB/

>] 72.19kB/

>] 498.2kB/

>] 18.66MB/

svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/contrail-vrouter-

3-6
Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

>] 3.697MB/

>] 18.29MB/

>] 1.352MB/

>] 2.365MB/

>] 2.81MB/

>] 54.39MB/

Loaded image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/contrail-vrouter-

kernel-init-dpdk:JCNR-22.3-6
42a40b94fdb4: Loading layer [
5.632kB
2079da3dd3ea: Loading layer [
250.6MB
5f6b6a83bbc2: Loading layer [

>] 5.632kB/

>] 250.6MB/

>] 22.02kB/

22.02kB

3c479d39cdd2:

13.82kB

a8e86ba6ad02:

9.216kB

ce903f8e71cc:

25.03MB

8b94298d6508:

372.5MB

Loaded image: svl-artifactory.juniper.

Loading layer

Loading layer

Loading layer

Loading layer

tools:JCNR-22.3-6

Loaded image: svl-artifactory.juniper.
Loaded image: svl-artifactory.juniper.

Loaded image: svl-artifactory.juniper.

exporter:JCNR-22.3-6

cfd97936a580: Loading layer [

1.455MB

Loaded image:
1e7fbcfd6526:

6.144kB

1b2e64d61760:

182.2MB

c58c4doe394a:

68.61kB

ae3bac1de8f4:

4.608kB

173cf86d714f:

720.9kB

7c5fc69220bb:

4.608kB

fc23189a25c0:

4.608kB

9e4bala88748:

44.09MB

999a87d50c2c:

54.22MB

b7247dc2bdc4:

478.7kB

Loaded image:
.3-6
e94ef981fc21:

dpdk : JCNR-22

63.51MB

Loaded image:

svl-artifactory.juniper.
Loading layer [

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

Loading layer

>] 13.82kB/

>] 9.216kB/

>] 25.03MB/

>] 372.5MB/

net/atom-docker/cn2/bazel-build/dev/contrail-

net/atom_virtual_docker/busybox:latest

net/junos-docker-local/warthog/busybox:latest

net/atom-docker/cn2/bazel-build/dev/contrail-telemetry-

>] 1.455MB/

net/atom-docker/cn2/bazel-build/dev/busybox:latest

>] 6.144kB/

>] 182.2MB/

>] 68.61kB/

>] 4.608kB/

>] 720.9kB/

>] 4.608kB/

>] 4.608kB/

>] 44.09MB/

>] 54.22MB/

>] 478.7kB/

svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/contrail-vrouter-

Loading layer [

>] 63.51MB/

svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/contrail-k8s-

crdloader:JCNR-22.3-6

Loaded image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/contrail-k8s-
applier:JCNR-22.3-6

a5af639475d7: Loading layer [>] 59.58MB/
59.58MB

Loaded image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/contrail-k8s-
deployer:JCNR-22.3-6

da2cd5786adc: Loading layer [>] 62.68MB/
62.68MB

Loaded image: svl-artifactory.juniper.net/atom-docker/cn2/bazel-build/dev/contrail-
init:JCNR-22.3-6

docker load -i images/syslog-ng-images.tar.gz

Loaded image: svl-artifactory.juniper.net/contrail-docker/syslog-ng:v6

5. Enter the root password for your host server and your Juniper Cloud-Native Router license file into
the secrets/jcnr-secrets.yaml file.

You must enter the password and license in base64 encoded format.

To encode the password, create a file that has only the plain text password on a single line. Then
issue the command:

base64 rootPasswordFile

The output is a single line of random-looking text similar to:
UGFzc3cwemQhCg==

To encode the license file, copy the file onto your host server and issue the command:

base64 licenseFile

The output is a long single line of random-looking text similar to:

VGhpcyBpcyBhIHJ1YWxseSBtdWNoIGxvbmdlciB0ZXh@IGZpbGUgdGhhdCBpbmNsdWR1cyBsaWN1bnN1IGluZm9ybWF@aWuCkFTREZERKtERK
tIQUXHS@hiYWIga2hkZmFzZGZOSOF TREAOROFKYWRZzZmxodmF ibmRzZmdramh2Ym5ramF zZnVxYmF1amgyMDEwdGIydDQweGtqYjR3eTBTdmRx
d3J2MG13aGVOYmd1YnMwcWRgZmhkc2tqdmIkc2ZramhkdmFkZnNi02d2a2pzZGI7aWRzame 7ZmF zZGhma2pkc2J2YW1zdWRmZ3dFWUIUR1ZCMz
IWRV1CV3jMOOVVHQLZHQ1FVOUFXR1ZJIQkVSV@c5VUIWVAUSRwo=

NOTE: You must obtain your license file from your account team and install it in the
secrets.yaml file as instructed above. Without the proper base64-encoded license file and
root password in the secrets.yaml file, the cRPD Pod does not enter Running state, but
remains in CrashLoopBackOff state.

You must copy the base64 outputs and paste them into the secrets/jcnr-secrets.yaml file in the
appropriate locations.

6. Apply the secrets/jcnr-secrets.yaml to the K8s system

kubectl apply -f secrets/jcnr-secrets.yaml

7. Edit the helm_charts/jcnr/values.yaml file.

You must customize the Helm chart for the Juniper Cloud-Native Router installation:
e Choose fabric interfaces-Use interface names from your host system

e Create the VLAN id list for trunk interfaces-Use VLAN ids that fit in your network
e Choose a fabric workload interface-Use interface names from your host system

e Set the VLAN id for traffic on the workload interface

e Set the severity level for JCNR-vRouter logging

NOTE: Leave the log_level set to INFO unless instructed to change it by JTAC.

e Set the cpu core mask-physical cores, logical cores

e Choose the fabric interface-Use interface names from your host system
e Choose a workload interface-Use interface names from your host system
e Set a rate limit for broadcast and multicast traffic in bytes per second

e Set a writeable directory location for syslog-ng to store notifications

e (Optional) If you specify a bond interface as your fabricInterface:, provide slavelnterface names
from your system under the bondInterfaceConfigs: section.

e By default restorelnterface is set to false. With this setting when vrouter pod crashes or is deleted
the interfaces are not restored back to host.

NOTE: If you are using the Intel XL710 NIC, you must set ddp=false in the
values.yaml

See "Sample Configuration Files" on page 35 for a commented example of the default helm_charts/
jenr/values.yaml file.

8. Deploy the Juniper Cloud-Native Router using Helm

helm install jcnr

NAME: jcnr

LAST DEPLOYED: Mon Aug 15 14:29:41 2022
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

9. Confirm Juniper Cloud-Native Router Deployment

helm 1s

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

jenr default 1 2022-08-17 18:51:18.472130634 -0700 PDT
deployed jcnr-22.3.0 22.3.0

Verify Operation of Containers

This task allows you to confirm that the Juniper Cloud-Native Router Pods are running.
1. kubectl get pods -A

The output of the kubectl command shows all of the pods in the K8s cluster in all namespaces.
Successful deployment means that all pods display that they are in the running state. In this example
we have marked the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS
RESTARTS AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running
0 41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running

0 41m

default delete-crpd-dirs--1-6jmxz 0/1 Completed

0 43m

default delete-vrouter-dirs--1-645dt 0/1 Completed

0 43m

kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d
ago) 129d

kube-system calico-node-j4m5b 1/1 Running 2 (92d
ago) 129d

kube-system coredns-8474476ff8-fpw78 11 Running 2 (92d
ago) 129d

kube-system dns-autoscaler-7f76f4dd6-q5vdp 1/1 Running 2 (92d
ago) 129d

kube-system kube-apiserver-5a5s5-node2 11 Running 3 (92d
ago) 129d

kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d
ago) 129d

kube-system kube-crpd-worker-ds-8tnf7 1/1 Running

0 41m

kube-system kube-multus-ds-amd64-4zm5k 11 Running 2 (92d
ago) 129d

kube-system kube-proxy-16xm8 1/1 Running 2 (92d
ago) 129d

kube-system kube-scheduler-5a5s5-node2 11 Running 4 (92d
ago) 129d

kube-system nodelocaldns-6kwgh 1/1 Running 2 (92d
ago) 129d

kube-system syslog-ng-54749b7b77-v24hq 1/1 Running

0 41m

2. kubectl get ds -A

Use the kubectl get ds -A command to get a list of daemonset containers.

kubectl get ds -A

NAMESPACE NAME
NODE SELECTOR AGE
contrail contrail-vrouter-masters

node-role.kubernetes.io/master= 43m
kube-system calico-node
kubernetes.io/os=1linux 129d
kube-system kube-crpd-worker-ds
<none> 43m
kube-system kube-multus-ds-amd64
kubernetes.io/arch=amd64 129d
kube-system kube-proxy
kubernetes.io/os=1linux 129d
kube-system nodelocaldns
kubernetes.io/os=1linux 129d

DESIRED

CURRENT ~ READY UP-TO-DATE AVAILABLE

Troubleshoot Deployment Issues

SUMMARY

This topic provides information about how to
troubleshoot deployment issues using Kubernetes
commands and how to view the cloud-native router
configuration files.

IN THIS SECTION

Troubleshoot Deployment Issues | 22

View Cloud-Native Router Controller
Configuration | 23

View Log Files | 23

Troubleshoot Deployment Issues

This topic provides information on some of the issues that might be seen during deployment of the
cloud-native router components and provides a number of Kubernetes (K8s) and shell commands that
you run on the host server to help determine the cause of deployment issues.

Table 4: Investigate Deployment Issues

Potential issue What to check Related Commands
Image not found Check if registry is accessible,
image tags are correct ® kubectl -n kube-system

describe pod <crpd-pod-name>

Initialization errors Check if jenr-secrets is loaded and
has a valid license key cat /var/run/jcnr/juniper.conf
Confirm that root password and
license key are present
cRPD Pod in CrashLoopBackOff e Check if startup/liveness probe

state ® kubectl get pods -A

is failing or vrouter pod not
running

kubectl describe pod <crpd-pod-
e rpd-vrouter-agent gRPC

name>
connection not UP
e Composed configuration is e See "Access the Cloud-Native
invalid or config template is Router CLIs" on page 26 to
invalid enter the cRPD CLI and run the

following command:

show krt state channel vrouter

® cat /var/run/jcnr/juniper.conf

Table 4: Investigate Deployment Issues (Continued)

Potential issue What to check Related Commands

vRouter Pod in CrashLoopBackOff Check the contail-k8s-deployer pod
state for errors kubectl logs contrail-k8s-

deployer-<pod-hash> -n contrail-
deploy

View Cloud-Native Router Controller Configuration

The cloud-native router deployment process creates a configuration file for the cloud-native router
controller (cRPD) as a result of entries in the values.yaml file. You can view this configuration file to see
the details of the cRPD configuration. To view the cRPD configuration:

1. Navigate to the /var/run/jcnr folder to access the configuration file details.

root@server:/var/run/jcnr#ls

config containers juniper.conf jcnr-crpd-pod.conf

2. View the contents of the configuration file.

root@server:/var/run/jcnr#vi juniper.conf

View Log Files

In this topic, we use the default log_path directory, /var/log/jcnr/, and the default syslog_notifications
directory, /var/log/jcnr/jcnr-notifications.json. You can change the location of the log files by changing
the value of the log_path: or syslog_notifications: keys in the values.yaml file prior to deployment.

Navigate to the following path and issue the 1s command to list the log files for each of the cloud-native
router components.

cd /var/log/jcnr/

[root@host: /var/log/jcnrl# 1s

contrail-vrouter-agent.log contrail-vrouter-dpdk-init.log contrail-vrouter-dpdk.log vrouter-
kernel-init.log

calico containers cloud-init.log contrail jenr-
cni.log

cloud-init-output.log crpd pods jenr-notifications. json

CHAPTER

Post Deployment

Manage Cloud-Native Router Controller and Cloud-Native Router vRouter | 26

Sample Configuration Files | 35

Manage Cloud-Native Router Controller and Cloud-
Native Router vRouter

SUMMARY IN THIS SECTION
This topic contains instructions for how to access the Access the Cloud-Native Router CLIs | 26
cloud-native router CLIs, how to run operational

) " Remove the Juniper Cloud-Native
commands in cRPD and vRouter containers, and how Router | 35

to remove cloud-native router.

Access the Cloud-Native Router CLlIs

You can access the cloud-native router's CLI to monitor the router's status and to make configuration
changes. In this section we provide the commands that you use to access the cRPD and vRouter CLlIs
and provide some examples of show commands.

Because the cloud-native router controller element runs as a Pod in a Kubernetes (K8s) cluster, you must
use K8s commands to access the CLI. We provide an example below. We do not provide specific
directory paths in our examples so you can copy and paste the commands into your server.

Access the Cloud-Native Router Controller (cRPD) CLI

In this example we list all of the K8s Pods running on the K8s host server. We use that output to
identify the cRPD Pod that hosts the cloud-native router controller container. We then connect to
the CLI of the cloud-native router controller and run some show commands.

List the K8s Pods Running in the Cluster

kubectl get pods -A

NAMESPACE NAME READY STATUS
RESTARTS AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running
0 41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running

0 41m

default delete-crpd-dirs--1-6jmxz 0/1 Completed

0 43m

default delete-vrouter-dirs--1-645dt 0/1 Completed

0 43m

kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d
ago) 129d

kube-system calico-node-j4m5b 1/1 Running 2 (92d
ago) 129d

kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d
ago) 129d

kube-system dns-autoscaler-7f76f4dd6-q5vdp 1/1 Running 2 (92d
ago) 129d

kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d
ago) 129d

kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d
ago) 129d

kube-system kube-crpd-worker-ds-8tnf7 1/1 Running

0 41m

kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d
ago) 129d

kube-system kube-proxy-16xm8 1/1 Running 2 (92d
ago) 129d

kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d
ago) 129d

kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d
ago) 129d

kube-system syslog-ng-54749b7b77-v24hq 1/1 Running

0

41m

The only Pod that has cRPD in its name is the kube-crpd-worker-ds-npbjq. Thus, this is the name
of the Pod we will use to access the cRPD CLI.

Connect to the cRPD CLI
The kubectl command that allows access to the controller's CLI has the following form:

kubectl exec -n <namespace> -it <cRPD worker Pod name> -- bash

In practice, you substitute values from your system for the values contained between angle
brackets (<>). For example:

kubectl exec -n kube-system -it kube-crpd-worker-ds-8tnf7 -- bash

The result of the above command should appear similar to:

Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2020-2021, Juniper Networks, Inc. All rights reserved.

root@ix-jcnr-01:/#

At this point, you have connected to the shell of the cloud-native router. Just as with other Junos-
based shells, you access the operational mode of the cloud-native router the same way as if you
were connected to the console of a physical Junos OS device.

root@jcnr-01:/# cli

root@jcnr-01>

Example Show Commands

In the following examples, we remove the prompt, root@jcnr-01>, so you can copy and paste the
commands into your system without editing them.

show interfaces terse

__crpd-brd1: flags=67<UP,BROADCAST,RUNNING> mtu 1500
inet6 fe80::205f:39ff:fe19:87b7 prefixlen 64 scopeid 0x20<link>
ether 22:5f:39:19:87:b7 txqueuelen 1000 (Ethernet)
RX packets @ bytes 0 (0.0 B)
RX errors 0 dropped @ overruns @ frame 0
TX packets 7 bytes 746 (746.0 B)

TX errors @ dropped @ overruns @ carrier @ collisions 0

cali502530ac57f: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1480
inet6 fe80::ecee:eeff:feee:eeee prefixlen 64 scopeid 0x20<link>
ether ee:ee:ee:ee:ee:ee txqueuelen 0 (Ethernet)

RX packets 9530538 bytes 816771272 (816.7 MB)
RX errors 0 dropped @ overruns @ frame 0
TX packets 11502794 bytes 11091296232 (11.0 GB)

TX errors @ dropped @ overruns @ carrier @ collisions 0

caliae604977c78: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1480
inet6 fe80::ecee:eeff:feee:eeee prefixlen 64 scopeid 0x20<link>
ether ee:ee:ee:ee:ee:ee txqueuelen 0 (Ethernet)

RX packets 10120320 bytes 904273274 (904.2 MB)

RX errors @ dropped @ overruns @ frame 0

TX packets 9242684 bytes 841165346 (841.1 MB)

TX errors @ dropped @ overruns @ carrier @ collisions 0

docker@: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
ether 02:42:b9:ad:64:ad txqueuelen @ (Ethernet)
RX packets @ bytes 0 (0.0 B)
RX errors @ dropped @ overruns @ frame 0
TX packets @ bytes 0 (0.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions 0

enol: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.87.3.138 netmask 255.255.255.128 broadcast 10.87.3.255
inet6 fe80::3eec:efff:fed4e:145¢c prefixlen 64 scopeid 0x20<link>
ether 3c:ec:ef:4e:14:5¢c txqueuelen 1000 (Ethernet)
RX packets 10432410 bytes 10076907508 (10.0 GB)
RX errors @ dropped @ overruns @ frame 0
TX packets 3444445 bytes 3877176824 (3.8 GB)
TX errors @ dropped @ overruns @ carrier @ collisions 0

device memory 0xaae20000-aae3ffff

eno2: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
ether 3c:ec:ef:4e:14:5d txqueuelen 1000 (Ethernet)
RX packets @ bytes 0 (0.0 B)
RX errors @ dropped @ overruns @ frame @
TX packets @ bytes 0 (0.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions 0

device memory 0xaae00000-aaelffff

enp59s0f0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
ether 40:a6:b7:2a:86:78 txqueuelen 1000 (Ethernet)
RX packets 25596 bytes 5412132 (5.4 MB)
RX errors @ dropped @ overruns @ frame 0
TX packets 6 bytes 660 (660.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions 0

enp59s0f1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
ether 40:a6:b7:2a:86:79 txqueuelen 1000 (Ethernet)

RX packets 554 bytes 116931 (116.9 KB)

RX errors @ dropped @ overruns @ frame 0

TX packets 7 bytes 770 (770.0 B)

TX errors @ dropped @ overruns @ carrier @ collisions 0

enp59s0f1vl: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

ether 72:e4:ae:81:4a:b3 txqueuelen 1000 (Ethernet)

RX packets 7 bytes 2048 (2.0 KB)

RX errors 0 dropped @ overruns @ frame 0

TX packets 612 bytes 107701 (107.7 KB)

TX errors @ dropped @ overruns @ carrier @ collisions 0

eth@: flags=195<UP,BROADCAST,RUNNING,NOARP> mtu 1500

inet 169.254.93.210 netmask 255.255.255.255 broadcast 0.0.0.0
inet6 fe80::58b2:7fff:fea9:3adb prefixlen 64 scopeid 0x20<link>
ether 5a:b2:7f:a9:3a:db txqueuelen 1000 (Ethernet)

RX packets @ bytes 0 (0.0 B)

RX errors @ dropped @ overruns @ frame @

TX packets 1 bytes 70 (70.0 B)

TX errors @ dropped @ overruns @ carrier @ collisions 0

gred: flags=193<UP,RUNNING,NOARP> mtu 1476

ip6tnle:

unspec 00-00-00-00-30-30-30-3A-00-00-00-00-00-00-00-00 txqueuelen 1000
RX packets @ bytes 0 (0.0 B)

RX errors @ dropped @ overruns @ frame 0

TX packets @ bytes 0 (0.0 B)

TX errors @ dropped @ overruns @ carrier @ collisions 0

flags=193<UP,RUNNING,NOARP> mtu 1452

inet6 fe80::d4c4:b5ff:fede:df84 prefixlen 64 scopeid 0x20<link>
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 1000
RX packets @ bytes 0 (0.0 B)

RX errors @ dropped @ overruns @ frame 0

TX packets @ bytes 0 (0.0 B)

TX errors @ dropped @ overruns @ carrier @ collisions 0

irb: flags=67<UP,BROADCAST,RUNNING> mtu 1500

inet6 fe80::f4a0:c8ff:fee6:a28c prefixlen 64 scopeid 0x20<link>
ether f6:a0:c8:e6:a2:8c txqueuelen 1000 (Ethernet)

RX packets @ bytes 0 (0.0 B)

RX errors @ dropped @ overruns @ frame 0

TX packets @ bytes 0 (0.0 B)

TX errors @ dropped @ overruns @ carrier @ collisions 0

(UNSPEC)

(UNSPEC)

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid @0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 4885871889 bytes 578917760800 (578.9 GB)
RX errors 0 dropped @ overruns @ frame 0
TX packets 4885871889 bytes 578917760800 (578.9 GB)

TX errors @ dropped @ overruns @ carrier @ collisions 0

1si: flags=67<UP,BROADCAST,RUNNING> mtu 1500
inet6 fe80::4fd:doff:fede:943b prefixlen 64 scopeid 0x20<link>
ether 06:fd:d0:4e:94:3b txqueuelen 1000 (Ethernet)
RX packets @ bytes 0 (0.0 B)
RX errors 0 dropped @ overruns @ frame 0
TX packets 4 bytes 440 (440.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions 0

sit@: flags=193<UP,RUNNING,NOARP> mtu 1480
inet6 ::127.0.0.1 prefixlen 96 scopeid 0x90<compat,host>
inet6 ::172.17.0.1 prefixlen 96 scopeid 0x80<compat,global>
inet6 ::169.254.93.210 prefixlen 96 scopeid 0x80<compat,global>
inet6 ::10.87.3.138 prefixlen 96 scopeid 0x80<compat,global>
sit txqueuelen 1000 (IPv6-in-IPv4)
RX packets @ bytes 0 (0.0 B)
RX errors @ dropped @ overruns @ frame @
TX packets @ bytes 0 (0.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions 0

tunl@: flags=193<UP,RUNNING,NOARP> mtu 1480
inet 10.233.90.0 netmask 255.255.255.255
tunnel txqueuelen 1000 (IPIP Tunnel)
RX packets @ bytes 0 (0.0 B)
RX errors @ dropped @ overruns @ frame @

TX packets @ bytes 0 (0.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions 0

show configuration routing-instances

vswitch {
instance-type virtual-switch;
bridge-domains {

bd100 {

vlan-id 100;
3
bd200 {

vlan-id 200;
}
bd300 {

vlan-id 300;
3
bd700 {

vlan-id 700;

interface enp59s0f1vo;
3
bd701 {

vlan-id 701;
}
bd702 {

vlan-id 702;
3
bd703 {

vlan-id 703;
}
bd704 {

vlan-id 704;
3
bd705 {

vlan-id 705;

}

interface bond@;

Access the Cloud-Native Router vRouter CLI

In this example we list all of the K8s Pods running on the K8s host server. We use that output to

identify the vRouter Pod that hosts the cloud-native router vrouter-agent container. We then

connect to the CLI of the vRouter-agent and run a show command to list the available interfaces.

List the K8s Pods Running in the Cluster

kubectl get pods -n contrail

NAME READY STATUS RESTARTS AGE

contrail-vrouter-masters-dfxgm 3/3 Running 0 79m

Connect to the Cloud-Native Router vRouter CLI
The kubectl command that allows access to the controller's CLI has the following form:

kubectl exec -n contrail -it <contrail-vrouter-masters-pod> -- bash
In practice, you substitute values from your system for the values contained between angle
brackets (<>). For example:

kubectl exec -n contrail -it contrail-vrouter-masters-xnwwp -- bash

The output of this command should look similar to:

root@jcnr-01:/#

At this point, you have connected to the vRouter's CLI. You can run commands in the CLI to learn
about the state of the vRouter. For example, the command shown below allows you to see which

interfaces are present on the vRouter.

root@jcnr-01:/# vif --list

Vrouter Operation Mode: Purel2
Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vifo/0 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 QO0S:-1 Ref:3
RX queue errors to Icore 0 0 0 0 0 0 000000
RX packets:0 bytes:0 errors:0
TX packets:11 bytes:4169 errors:0
Drops:0

vife/1 PCI: 0000:00:00.0 (Speed 25000, Duplex 1)
Type:Physical HWaddr:46:37:1f:de:df:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue errors to Icore 0 0 0 0 0 0 000000
Fabric Interface: eth_bond_bond® Status: UP Driver: net_bonding
Slave Interface(0): 0000:3b:02.0 Status: UP Driver: net_iavf
Slave Interface(1): 0000:3b:02.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk VIlan: 100 200 300 700-705
RX packets:0 bytes:0 errors:0
TX packets:378 bytes:81438 errors:0
Drops:0

vifo/2 PCI: 0000:3b:0a.0 (Speed 25000, Duplex 1)
Type:Workload HWaddr:ba:69:c0:b7:1f:ba
Vrf:0 Flags:L2Vof Q0S:-1 Ref:7
RX queue errors to Icore 0 0 0 0 0 0 000000
Fabric Interface: 0000:3b:0a.@ Status: UP Driver: net_iavf
Vlan Mode: Access Vlan Id: 700 OVlan Id: 700
RX packets:378 bytes:81438 errors:2
TX packets:@ bytes:0 errors:0
Drops: 391

Remove the Juniper Cloud-Native Router

We do not provide specific directory names for the commands in this topic. This allows you to copy and
paste the commands from this document onto your server.

Uninstall the Juniper Cloud-Native Router.

helm uninstall jcnr

Sample Configuration Files

Read this section to find sample YAML configuration files for use in deploying Juniper Cloud-Native
Router. These YAML files control the features and functions available to cloud-native router by affecting
the deployment instructions. YAML files for workload configuration are also included. The workload
configuration files control the workload functions.

We've included the following sample configuration files:
¢ Juniper Cloud-Native Router Main Configuration Flle
e e main "values.yaml" on page 36file

¢ Juniper Cloud-Native Router vRouter-Specific Configuration File

"jcnr-vrouter specific values.yaml file" on page 37

¢ Juniper Cloud-Native Router JCNR-CNI-Specific Configuration File

"jenr-cni specific values.yaml file" on page 41
¢ Workload Configuration Files
e o '"nad-dpdk_trunk_vlan_3002.yaml" on page 43

e " nad-kernel_access_vlan_3001.yaml" on page 44
e " nad-odu-bd3003-sub.yaml" on page 45

e "nad-odu-bd3004-sub.yaml" on page 46

e "odu-virtio-subinterface.yaml" on page 47

e "pod-dpdk-trunk-vlan3002.yaml " on page 49

e "pod-kernel-access-vlan-3001.yaml" on page 50

Use these files to understand the configuration options available for deployment of Juniper Cloud-
Native Router. The workload configuration files display how you can configure trunk and access
interfaces and configure various VLANSs for each type. Each of the files contain comments that start with
a hash mark (#) and are highlighted in bold in these examples.

e values.yaml

This is the main values.yaml file. There are 3 other values.yaml files supplied in the TAR file. 1
values.yaml for each of the installation components: jenr-cni, jenr-vrouter, and syslog-ng.

If there are conflicting settings between the individual values.yaml files and the main values.yaml file,
the settings in the main values.yaml file take precedence.

B g R g g e g R S g e i

Common Configuration (global vars)
B T T T s s
global:

registry: svl-artifactory.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below
#repository: path/to/allimages/
common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/
tag: JCNR-22.3-6
crpd:
repository: junos-docker-local/warthog/
tag: 22.3R1.8
jenreni:
repository: junos-docker-local/warthog/
tag: 20220918-4adf886

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

fabricInterface: NGDU or tor side interface, expected all types

of traffic; interface_mode is always trunk for this mode
fabricInterface:
- bond@:

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

fabricWorkloadInterface: RU side interfaces, expected traffic is only
management/control traffic; interface mode is always access for this mode
fabricWorkloadInterface:
- enp59s0f1ve:
interface_mode: access
vlan-id-list: [700]

jenr-vrouter:
restoreInterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

bond interface configurations
bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE -- This is the only supported mode
slavelnterfaces:
- "enp59s0fove"
- "enp59s0fov1"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask

cpu_core_mask: "2,3"

rate limit for broadcast/multicast traffic on fabric interfaces in bytes per second
fabricBMCastRateLimit: 0

Set ddp to true to enable Dynamic Device Personalization (DDP)

It provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
ddp: true #set to false if you use the Intel XL710 NIC

e jcnr-vrouter specific values.yaml

This values.yaml file is specific to the jenr-vrouter Pod. It is located under the
Juniper_Cloud_Native_Router_<release-number>/helm_charts/jcnr/charts/jcnr-vrouter directory. If
you enter any values in this file that conflict with values in the main values.yaml file, the values in the
main values.yaml file take precedence.

This is a YAML-formatted file.

Declare variables to be passed into your templates.

common:
registry: svl-artifactory.juniper.net/
repository: atom-docker/cn2/bazel-build/dev/

anchor tag for vrouter container images
vrouter-tag: &vrouter_tag JCNR-22.3-6

contrail_init:
image: contrail-init
tag: *vrouter_tag
pullPolicy: IfNotPresent

contrail_vrouter_kernel_init_dpdk:
image: contrail-vrouter-kernel-init-dpdk
tag: *vrouter_tag
pullPolicy: IfNotPresent

contrail_vrouter_agent:
image: contrail-vrouter-agent
tag: *vrouter_tag
pullPolicy: IfNotPresent

contrail_vrouter_agent_dpdk:
image: contrail-vrouter-dpdk
tag: *vrouter_tag
pullPolicy: IfNotPresent

resources:
limits:
memory: 4Gi
hugepages-1Gi: 4Gi # Hugepages must be enabled with default size as 1G;
minimum 4Gi to be used
requests:
memory: 4Gi

hugepages-1Gi: 4Gi

contrail_vrouter_telemetry_exporter:
image: contrail-telemetry-exporter
tag: *vrouter_tag
pullPolicy: IfNotPresent

contrail_k8s_deployer:
image: contrail-k8s-deployer
tag: *vrouter_tag
pullPolicy: IfNotPresent

contrail_k8s_crdloader:
image: contrail-k8s-crdloader
tag: *vrouter_tag
pullPolicy: IfNotPresent

contrail_k8s_applier:
image: contrail-k8s-applier
tag: *vrouter_tag
pullPolicy: IfNotPresent

busyBox:
image: busybox
tag: "latest"
pullPolicy: IfNotPresent

vrouter_name: master

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter_log_path: "/var/log/jcnr/"

Defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFQ"

dpdkCommandAdditionalArgs: "--yield_option 0"

Set ddp to true to enable Dynamic Device Personalization (DDP)
It provides datapath optimization at NIC for traffic like GTPU, SCTP etc.

ddp: true

vrouter fwd core mask

cpu_core_mask: "2,3"

vrouter service thread mask

service_core_mask:

vrouter control thread mask
dpdk_ctrl_thread_mask: ""

#
dpdk_mem_per_socket: "1024"

L3 disabled for switching mode

jenr_mode: "12_only"

global Mac table size - We recommend leaving this at the default value
mac_table_size: "10240"

timeout (seconds) for aging Mac table entries (S)

mac_table_ageout: 60

parameters for vRouter livenessProbe
livenessProbe:
initialDelaySeconds: 10
periodSeconds: 20
timeoutSeconds: 5
failureThreshold: 3
successThreshold: 1

parameters for vRouter startupProbe
startupProbe:
initialDelaySeconds: 10
periodSeconds: 20
timeoutSeconds: 5
failureThreshold: 3
successThreshold: 1

setting this to true will restore the interfaces back to
their original state in case vrouter pod crashes or restarts
restoreInterfaces: false

tor side interface, expected all types of traffic
fabricInterface:

- enp4sofovfo

- bonde

RU side interfaces, expected traffic is only management/control traffic
fabricWorkloadInterface:
- enp4s0fi1vfo

bond interface configurations
bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:
- "enpls0f1"
- "enp2s0f1"

rate limit for broadcast/multicast traffic on fabric interfaces in bytes per second
fabricBMCastRateLimit: 0

e jcnr-cni specific values. yaml

This values.yaml file is specific to the jenr-cni Pod. The jcnr-cni specfic values.yaml file is located
under the Juniper_Cloud_Native_Router_<release-number>/helm_charts/jcnr/charts/jcnr-cni
directory. If you enter any values in this file that conflict with values in the main values.yaml file, the
values in the main values.yaml file take precedence.

Default values for jcnr.
This is a YAML-formatted file.

Declare variables to be passed into your templates.

common:
registry: svl-artifactory.juniper.net/
repository: junos-docker-local/warthog/

crpdImage:
image: crpd
tag: "22.3R1.8"
pullPolicy: IfNotPresent

jenrCNIImage:

image: jcnr-cni

tag: "20220918-fadf886"
pullPolicy: IfNotPresent

crpdConfigGeneratorImage:
image: crpdconfig-generator
tag: "v3"
pullPolicy: IfNotPresent

busyBox:
image: busybox
tag: "latest"
pullPolicy: IfNotPresent

#data plane default is dpdk for vrouter case, linux for kernel module
dataplane: dpdk

networkAttachmentDefinitionName: vswitch

crpd_log_path: "/var/log/jcnr/"

Defines the log severity. Possible options: panic, fatal, error,

warn or warning, info, debug, trace

log_level: "info"

parameters for cRPD livenessProbe
livenessProbe:
initialDelaySeconds: 5
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

successThreshold: 1

parameters for cRPD startupProbe
startupProbe:
initialDelaySeconds: 5
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

successThreshold: 1

crpdConfigs:

interface_groups:
fabricInterface: # TOR side interface, expected all types of traffic

- bondo:
interface_mode: trunk # interface mode is always trunk for fabricInterface
vlan-id-list: [100, 200, 700] # vlan-id-lists

- enp4sofovfo:
interface_mode: trunk # interface mode is always trunk for fabricInterface
vlan-id-list: [300, 500, 3001, 3002] # vlan-id-lists

- enp4s0fovfi:
interface_mode: trunk # interface mode is always trunk for fabricInterface
vlan-id-list: [3003, 3004, 3201-3250, 900] # vlan-id-lists

- enp4sofovf2:
interface_mode: trunk # interface mode is always trunk for fabricInterface
vlan-id-list: [3251-3255] # vlan-id-lists

fabricWorkloadInterface: # RU side interfaces, expected traffic is only management/
control traffic

- enp4sofivfo:
interface_mode: access # interface mode is always access for fabricWorkloadInterface
vlan-id-list: [700] # vlan-id-list must always be a single value for

fabricWorkloadInterface

- enp4s1fivfo:
interface_mode: access # interface mode is always access for fabricWorkloadInterface
vlan-id-list: [900] # vlan-id-list must always be a single value for

fabricWorkloadInterface

routing_instances:
- vswitch:

instance-type: virtual-switch

nad-dpdk_trunk_vlan_3002.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: nad-vswitch-bd3002
spec:
config: '{
"cniVersion":"0.4.0",
"name": "nad-vswitch-bd3002",
"capabilities":{"ips":true},

"plugins": [

"type": "jcnr",

"args": {
"instanceName": "vswitch",
"instanceType": "virtual-switch",
"bridgeDomain": "bd3002",
"bridgeVlanId": "3002",
"dataplane": "dpdk",

"mtu": "9000"

1,

"ipam": {
"type": "static",
"capabilities":{"ips":true},
"addresses": [

{
"address":"2001:db8:3002::10.2.0.1/64",
"gateway":"2001:db83002::10.2.0.254"

1,

{

"address":"10.2.0.1/24",
"gateway":"10.2.0.254"
}
]
1,

"kubeConfig":"/etc/kubernetes/kubelet.conf"

} 1

nad-kernel_access_vlan_3001.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition

metadata:

name: podl-vswitch-bd3001-1
spec:

config: '{

"cniVersion":"0.4.0",
"name": "pod1-vswitch-bd3001-1",
"capabilities":{"ips":true},

"plugins": [

"type": "jcnr",

"args": {
"instanceName": "vswitch",
"instanceType": "virtual-switch",
"bridgeDomain": "bd3001",
"bridgeVlanId": "3e001",
"dataplane": "dpdk",
"mtu”: "9000",

"interfaceType":"veth"

1,

"ipam": {
"type": "static",
"capabilities":{"ips":true},
"addresses": [

{
"address":"2001:db8:3001::10.1.0.1/64",
"gateway":"2001:db8:3001::10.1.0.254"

1,

{

"address":"10.1.0.1/24",
"gateway":"10.1.0.254"
}
]
1,

"kubeConfig":"/etc/kubernetes/kubelet.conf"

} 1

nad-odu-bd3003-sub.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition

metadata:

name: vswitch-bd3003-sub
spec:

config: '{

"cniVersion":"0.4.0",
"name": "vswitch-bd3003-sub",

"capabilities":{"ips":true},

"plugins": [

{

"type": "jenr",

"args": {
"instanceName": "vswitch",
"instanceType": "virtual-switch",
"bridgeDomain": "bd3003",
"bridgeVlanId": "3003",
"parentInterface":"net1",
"interface":"net1.3003",
"dataplane":"dpdk"

1,

"ipam": {
"type": "static",
"capabilities":{"ips":true},
"addresses": [

{

"address":"10.3.0.1/24",
"gateway":"10.3.0.254"

1,

{
"address":"2001:db8:3003::10.3.0.1/120",
"gateway":"2001:db8:3003::10.3.0.1"

}

]
1,
"kubeConfig":"/etc/kubernetes/kubelet.conf"
}

nad-odu-bd3004-sub.yaml

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition

metadata:

name: vswitch-bd3004-sub
spec:

config: '{

"cniVersion":"0.4.0",
"name": "vswitch-bd3004-sub",

"capabilities":{"ips":true},
"plugins": [
{
"type": "jcnr",
"args": {
"instanceName": "vswitch",
"instanceType": "virtual-switch",
"bridgeDomain": "bd3004",
"bridgeVlanId": "3004",
"parentInterface":"net1",
"interface":"net1.3004",
"dataplane":"dpdk"

1,

"ipam": {
"type": "static",
"capabilities":{"ips":true},

"addresses": [

{

"address":"30.4.0.1/24",
"gateway":"30.4.0.254"

1,

{
"address":"2001:db8:3004::10.4.0.1/120",
"gateway":"2001:db8:3004::10.4.0.1"

}

]
1,
"kubeConfig":"/etc/kubernetes/kubelet.conf"

odu-virtio-subinterface.yaml

apiVersion: vl
kind: Pod
metadata:
name: odu-subinterface-1
annotations:
k8s.v1.cni.cncf.io/networks: |

{
"name": "vswitch-bd3003-sub"
1,
{
"name": "vswitch-bd3004-sub"
}
]
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:

- key: kubernetes.io/hostname
operator: In
values:
- 5d7s39.englab. juniper.net
containers:
- name: odu-subinterface
image: svl-artifactory.juniper.net/junos-docker-local/warthog/pktgen19116:subint
imagePullPolicy: IfNotPresent
securityContext:
privileged: false
resources:
requests:
memory: 2Gi
limits:
hugepages-1Gi: 2Gi
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
- mountPath: /dev/hugepages
name: hugepage
volumes:
- name: dpdk
hostPath:

path: /var/run/jcnr/containers
- name: hugepage
emptyDir:

medium: HugePages

pod-dpdk-trunk-v1an3002.yaml

apiVersion: vl
kind: Pod
metadata:
name: odu-trunk-1
annotations:
k8s.v1.cni.cncf.io/networks: nad-vswitch-bd3002
spec:
containers:
- name: odu-trunk
image: svl-artifactory.juniper.net/junos-docker-local/warthog/pktgen19116:trunk
imagePullPolicy: IfNotPresent
securityContext:
privileged: true
resources:
requests:
memory: 2Gi
limits:
hugepages-1Gi: 2Gi
env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
- mountPath: /dev/hugepages
name: hugepage
volumes:
- name: dpdk
hostPath:
path: /var/run/jcnr/containers

- name: hugepage

emptyDir:

medium: HugePages

pod-kernel-access-vlan-3001.yaml

apiVersion: vl
kind: Pod
metadata:
name: odu-kenel-pod-bd3001-1
annotations:
k8s.v1.cni.cncf.io/networks: podl-vswitch-bd3001-1
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- 5d8s7.englab. juniper.net
containers:
- name: odu-kenel-pod-bd3001-1
image: vinod-iperf3:latest
imagePullPolicy: IfNotPresent
command: ["/bin/bash","-c","sleep infinity"]
securityContext:

privileged: false

env:
- name: KUBERNETES_POD_UID
valueFrom:
fieldRef:
fieldPath: metadata.uid
volumeMounts:
- name: dpdk
mountPath: /dpdk
subPathExpr: $(KUBERNETES_POD_UID)
volumes:

- name: dpdk

hostPath:

path: /var/run/jcnr/containers

	Table of Contents
	Overview
	What Is the Juniper® Cloud-Native Router?
	System Resource Requirements

	Deploy Juniper Cloud-Native Router
	Install Juniper Cloud-Native Router
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Operation of Containers

	Troubleshoot Deployment Issues
	Troubleshoot Deployment Issues
	View Cloud-Native Router Controller Configuration
	View Log Files

	Post Deployment
	Manage Cloud-Native Router Controller and Cloud-Native Router vRouter
	Access the Cloud-Native Router CLIs
	Remove the Juniper Cloud-Native Router

	Sample Configuration Files

